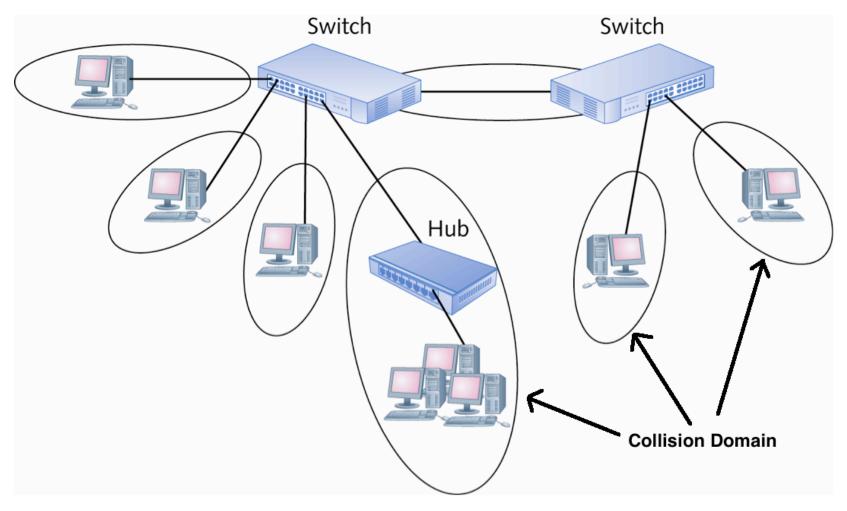
Guide to Networking Essentials, 6th Edition

Chapter 7: Network Hardware in Depth

Objectives

- Describe the advanced features and operation of network switches
- Describe routing table properties and discuss
 routing protocols
- Explain basic and advanced wireless access point features
- Select the most suitable NIC bus and features for a computer

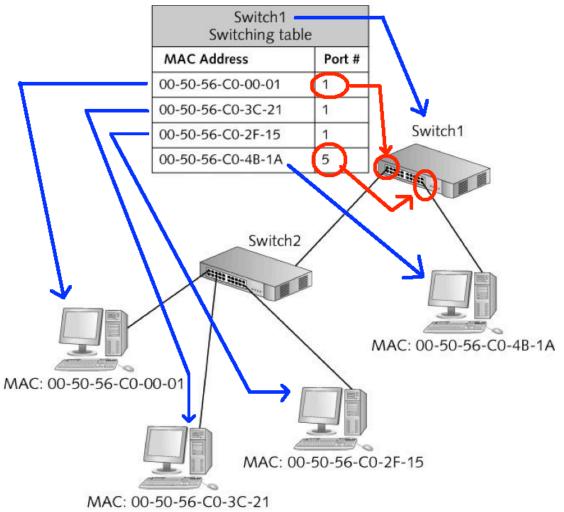

Network Switches in Depth

- Switches work at the Data Link layer (Layer 2)
 - Receive frames on one port and forward them out the port where the destination device can be found
- Switches send broadcast frames out all ports
- Each switch port is considered a collision domain (see figure on next slide)
 - Switches do not forward collision information to any other ports
- Switch ports can operate in full-duplex mode
 - Allows connected devices to transmit and receive simultaneously, eliminating the possibility of a collision

Data Link Laver (2)

Network Switches in Depth

Each switch port is a collision domain


Switch Port Modes of Operation

- Ports on a typical 10/100 Mbps switch can usually operate in full-duplex:
 - Full-duplex allows connected devices to transmit and receive simultaneously
 - 10 Mbps full-duplex
 - 100 Mbps full-duplex
- Most switches run in auto-negotiate mode, which means the switch sets the mode to the highest performance setting the connected device supports

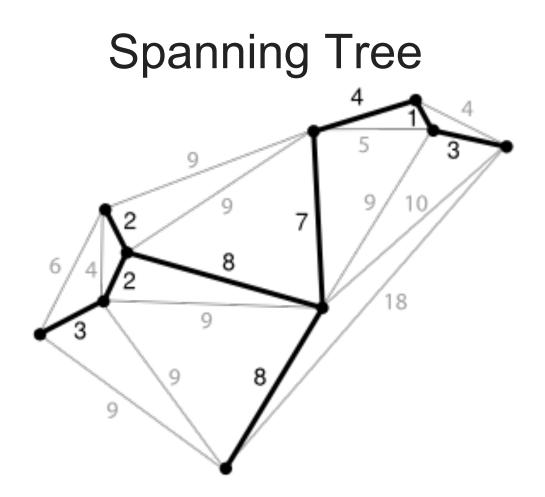
Creating the Switching Table

- A switching table holds MAC address/port pairs that tell the switch where to forward a frame, based on the destination MAC address
- When a switch is first powered on, its table is empty
- As network devices send frames, the switch reads each frame's source address and adds it to the table along with the port it was received from
- If a frame's destination address isn't found in the switching table, the switch forwards the frame out all ports

Creating the Switching Table

Switching tables can contain multiple MAC addresses per port

Creating the Switching Table

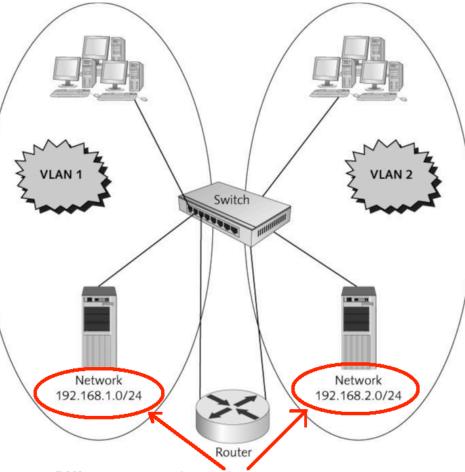

- Most switches include a number that indicates the number of MAC addresses the switch can hold in its table (8K MAC addresses supported)
- Switching tables prevent stale entries by including a timestamp when an entry is created
 - When a switch receives a frame from a device already in its table, it updates the entry with a new timestamp
- The period of time a table keeps a MAC address is called the **aging time**
 - If the timestamp isn't updated within the aging time, the entry expires and is removed from the table

- High-end switches, often referred to as "smart switches" and "managed switches," can help make a network more efficient and reliable
- The following slides are an overview of the most common features found in "smart switches"

- Multicast processing Switches process multicast frames in one of two ways
 - By treating them as broadcasts and sending them out all ports
 - Used by low-end switches or those that have not been configured for it
 - By forwarding the frames only to ports that have registered the multicast address
 - Used by switches that support Internet Group Management Protocol (IGMP)
 - Multicast MAC addresses always begin with 01:00:5E, leaving the rest of the address to identify a particular multicast application

- **Spanning Tree Protocol** Enables switches to detect when there is a potential for a switching loop
- A loop occurs when a frame is forwarded from one switch to another in an infinite loop
 - When a possible loop is detected, one of the switch ports goes into blocking mode, preventing it from forwarding frames that would create a loop
 - If the loop configuration is broken, the switch that was in blocking mode resumes forwarding frames

• *Simulation 15 – STP prevents switching loops*


Points – represent switch in network Numbers – represent cost to transmit to next switch Switch – each switch has computers attached

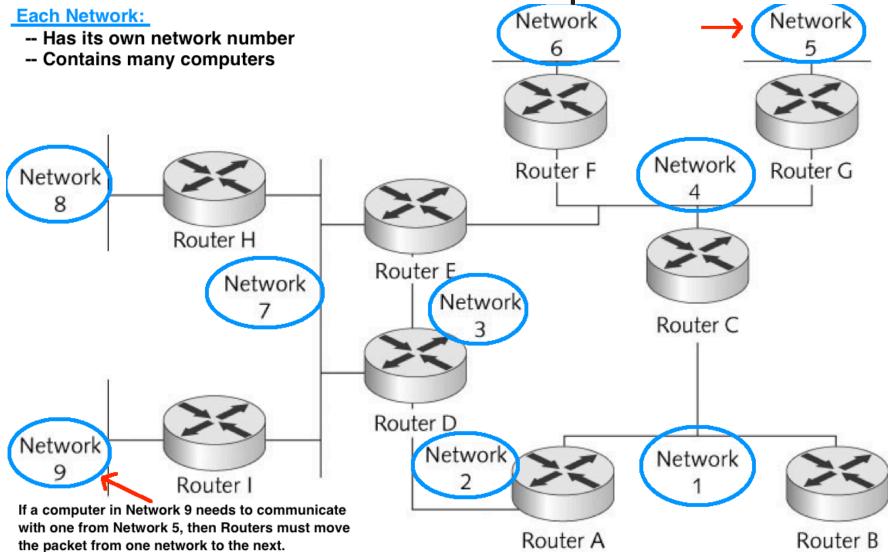
- Virtual Local Area Networks (VLANS) enable you to configure one or more switch ports into separate broadcast domains
 - It's like separating a switch into two or more switches that aren't connected to one another
 - A router is needed to communicate between VLANs
 - Improves management and security of the network and gives more control of broadcast frames
 - Allows administrators to group users and resources logically instead of by physical location

VLANs logically group users and resources from different physical locations

A **trunk port** is a switch Port configured to carry Traffic from all VLANs to another switch or router

Simulation 16 – How switches use trunk ports with VLANs

Different network numbers means:

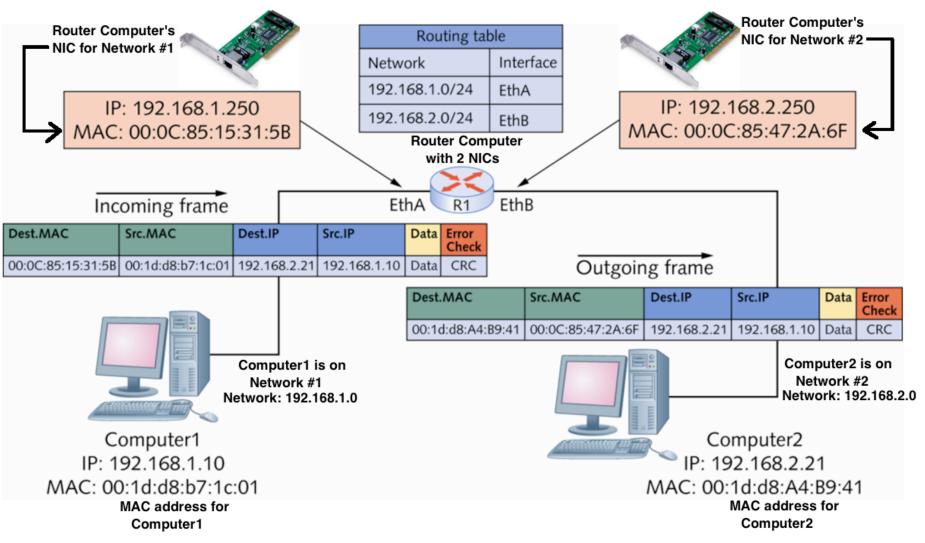

- -- 2 different networks
- -- router required to connect the 2 networks
- -- only packets addressed to the other network get passed from 1 network to the other

Routers in Depth

- Routers operate at the Network layer (Layer 3) and work with packets
 - Connect separate logical networks to form an internetwork
 - Broadcast frames are not forwarded to other router ports (other networks)
 - Routers can be used to create complex internetworks with multiple paths creating fault tolerance and load sharing
 - All processing done by routers depends on the following features found on most routers:
 - Router interfaces
 - Routing tables
 - Routing protocols
 - Access control lists

Routers in Depth

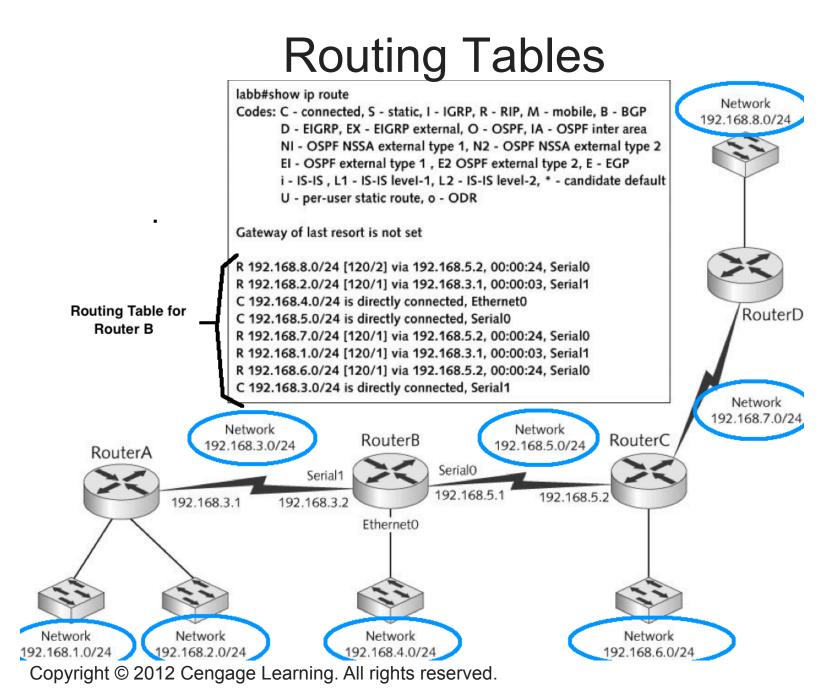
Router Interfaces


 Routers must have two or more interfaces (ports) in order to take packets coming from one network and forward them to another network

 that is, 2 NIC cards

- When a router interface receives a frame, it compares the destination MAC address with the interface's MAC address
 - If they match, the router strips the frame header and trailer and reads the packet's destination IP address
 - If the IP address matches it processes the packet
 - If the IP address does not match, the router consults its routing table to determine how to get the packet to the its destination
 - The process of moving a packet from the incoming interface to the outgoing interface is called **packet forwarding**

Router Interfaces


Packets are forwarded from one network to another

Routing Tables

- Routing tables are composed of network address and interface pairs that tell the router which interface a packet should be forwarded to
- Most routing tables contain the following for each entry:
 - Destination network: Usually expressed in CIDR notation such as 172.16.0.0/16
 - Next hop: The next hop indicates an interface name or the address of the next router in the path to the destination
 - Total number of routers a packet must travel through is called the hop count
 - Metric: Numeric value that tells the router how "far away" the destination network is (also called cost or distance)

Routing Tables

- Contents of routing tables (cont.):
 - How the route is derived: This field tells you how the route gets into the routing table (one of 3 ways)
 - Network is connected directly
 - Administrator enters the route information manually (called a static route)
 - Route information is entered dynamically, via a routing protocol
 - Timestamp: Tells the router how long it has been since the routing protocol updated the dynamic route
- Simulation 17 Routers use multiple paths in an internetwork

Routing Protocols

- Routing protocol A set of rules that routers use to exchange information so that all routers have accurate information about an internetwork to populate their routing tables
- Two main types of routing protocols
 - Distance-vector protocols share information about an internetwork's status by copying a router's routing table to other routers (routers sharing a network are called neighbors)
 - Routing Information Protocol (RIP) and RIPv2 are most common
 - Link-state protocols share information with other routers by sending the status of all their interface links to other routers
 - Open Shortest Path First (OSPF) is most common

Access Control Lists

- Access Control List (ACL) A set of rules configured on a router's interface for specifying which addresses and which protocols can pass through an interface and to which destinations
- When an ACL blocks a packet it is called *packet filtering*
- Usually configured to block traffic based on:
 - Source address
 - Destination address
 - Protocol
- Addresses can be specific IP addresses or network numbers and filtering can be done on either source or destination address or both

Wireless Access Points in Depth

- Basic wireless settings on most APs define the settings a client wireless device needs to connect to an AP:
 - Wireless network mode: allows you to choose which 802.11 standard the AP should operate under
 - Wireless network name (SSID): when an AP is shipped, the SSID is set to a default value – it is recommended that you change it upon setup
 - SSID broadcast status: by default
- Commonly purchased:
 - Wireless Router consisting of:
 - Wireless access point
 - Router
 - Switch

Wireless Security Options

- Most APs offer the following security options:
 - Encryption
 - Authentication
 - MAC filtering
 - AP isolation
- Encryption all private networks should use this
 - Most common protocols are:
 - Wired Equivalent Privacy (WEP) weakest
 - Wi-Fi Protected Access (WPA)
 - Wi-Fi Protected Access 2 (WPA2) strongest
 - Use the highest level of security your systems support all devices must use the same protocol

Wireless Security Options

- Authentication If used, users must enter a username and password to access the wireless network
- MAC filtering enables you to restrict which devices can connect to your AP
 - Add the MAC addresses of the wireless devices allowed to access your network to a list on the AP

Network Interface Cards in Depth

- PC Bus Options a bus makes the connections between a computer's vital components
 - The faster the bus, the faster data can be transferred between these components, which makes for a faster system
 - NICs are considered I/O devices and can be built into the motherboard or added as an expansion card
 - Peripheral Component Interconnect (PCI) bus became the default bus standard
 - Most implementations are 32-bit and operate at 33 MHz with a maximum data transfer rate of 133 MBps
 - First bus to accommodate the Microsoft Plug-and-Play architecture

Advanced Features of NICs

- If a NIC is slow, it can limit network performance
- When selecting a network adapter, first identify the physical characteristics the card must match (type of bus, type of network technology, type of connector needed to connect to media)
- Hardware-enhancement options:
 - Shared adapter memory: the adapter's buffers map directly to RAM on the computer
 - Shared system memory: a NIC's onboard processor selects a region of RAM on the computer and writes to it as though it were buffer space on the adapter

Advanced Features of NICs

- Hardware-enhancement options (continued):
 - RAM buffering: means a NIC includes additional memory to provide temporary storage for incoming and outgoing network data that arrives at the NIC faster than it can be sent out
 - Onboard co-processors: enable the card to process incoming and outgoing network data without requiring service from the CPU

Advanced Features of NICs

- Hardware-enhancement options (continued):
 - Improved fault tolerance by installing a second NIC
 - Failure of the primary NIC shifts network traffic to the second NIC
 - Advanced Configuration Power Management Interface (ACPI) offers wake-on LAN, which allows an administrator to power on a PC remotely by accessing the NIC through the network
 - Preboot Execution Environment (PXE) allow a computer to download an OS instead of booting it from a local hard drive
 - Used on diskless workstations ("thin clients") that do not store the OS locally
- Typical desktop computers with basic features are usually adequate.
- Servers do warrant some of these high-end features

Chapter Summary

- Network switches use auto-negotiate mode to determine the link speed and duplex mode
- Switching tables can hold many more MAC addresses than ports
- Switches forward frames by using a variety of methods: cut-through, fragment-free, and store-and-forward
- Advanced features, such as VLANs, STP, multicast support, and port security are found on smart switches
- Routing tables contain destination networks, next hop addresses, metrics, methods used to derive routes, and timestamps

Chapter Summary

- Routing protocols populate routing tables dynamically. The most common type of routing protocols are distancevector and link-state
- Access points have the following basic settings: wireless mode, SSID, and wireless channel
- Higher-end APs can support advanced features, such as multiple SSIDs, adjustable transmit power, VLANs, QoS, and repeater and bridge modes
- NIC selection includes the PC bus
- Some advanced NIC features to consider include RAM buffering, onboard co-processors, automatic link aggregation, and multiple ports for fault tolerance